1		1 1 10 E	1 2 00 170		
演習問題解答 および 索引					
421	1.4	l = 10Å	l = 1Å		
		$= n^2 6.025 \times 10^{-18} \text{ J}$	$ = n^2 \times 6.025 \times 10^{-18} \mathrm{J}$		
	2.4	2144 cm -1	2144 cm ⁻¹		
422	2.6	$\int y * y \mathrm{d}x, \ \int y * Hy \mathrm{d}x$	$\int y^* y \mathrm{d}x, \ \int y^* H y \mathrm{d}x$		
	3.1下段	積分の上限値が横向きのzになっているが、∞に直す。			
	3.2上段	3重積分の最後の積分の上限値はπでなく2π。			
423	4.100 1	$17 \rightarrow 16 \rightarrow 15$	17 族→16 族→15 族		
		1族は17と同じ	1族は17族と同じ		
	4.10 2	$S_2: 0.1889, Se:$	S ₂ : 0.1889, Se:		
	4.2の表	LiF 9 4.7 eV			
424	6.2と6.5	mD, mm	μD, μm		
425	10.2	$S=C_v \ln (T2/T1) = \dots$	$S=C_v \ln (T_2/T_1) =$		

本書は、校正の手違いから、第1刷に多くの誤植やケアレスな誤りが残りました。 読者の方々に深くお詫び申し上げます。下記の正誤表にしたがって、訂正個所をお 直し下さい。第2刷りからは、誤植を訂正の上、発行いたします。

最初に重要な訂正があります。本正誤表の左のページ (表紙の裏) 11 行目、 気体定数 R の最初の値を

3.814510 J K⁻¹mol⁻¹ から **8.314510** J K⁻¹mol⁻¹ に変更して下さい

ページ	行など	誤	正	
表紙裏	左10	電力定数	重力定数	
	左18	真空の誘電率 е	真空の誘電率 e_0	
2人/八天	左20	フランク定数	プランク定数	
	右6	Eh	E_h	
裏表紙裏	左6	$\int_0^a \sin \frac{npx}{a} \sin \frac{mpx}{a}$	$\int_0^a \sin \frac{npx}{a} \sin \frac{mpx}{a} dx$	
		$= \int_0^a \cos \frac{npx}{a} \cos \frac{mpx}{a} =$	$= \int_0^a \cos \frac{npx}{a} \cos \frac{mpx}{a} dx =$	
	左7	$\int_0^a \cos \frac{npx}{a} \sin \frac{mpx}{a} = 0$	$\int_0^a \cos \frac{npx}{a} \sin \frac{mpx}{a} dx = 0$	
	左10	式の右辺x6/6!の前の符号を+からーに変える。		
	左11	式の右辺x ⁷ /7!の前の符号を+から-に変える。		
	左↑4	式の右辺 $\sin x$ の前の i を i に変える。		
	† 4	時間を含む現象の理	時間を含む現象の理解	
iv	↑ 3	化学反応の理解解	化学反応の理解	
4	5	J. Dolton	J. Dalton	
5	18	magnitism	magnetism	
66	中程	mの異なる軌道に	フントの規則 (mの異なる軌道に)	
67	4	唯一シュレディンガーの	シュレディンガーの	
74	解答の 式	$\mathbf{L}\sin q\cos jr^2\sin qdrdqdj$	$\mathbf{L}\sin q\cos j r^2\sin q \ drdqdj$	
80	例題3.3	最下段の「→」以降の記述を削除		
83	8	(桁数が少なくて済むため)	(手頃な大きさになるため)	
90	↑ 6	(C.11)式	(C.12)式	
		$i \times j = -i \times j = k$	$i \times j = -j \times i = k$	
96	(C.34)式	BI=IB	BI=IB=B	
	3	「可喚である」	「可換である」	
100	例題C.9	総てのexp(hng/g _B T)をexp(… $hn/k_{ m B}T$)に変える。	

 $1 = \overline{v}/z_{N_0} = \dots$

(e=mv²/2と変数変換)

 $A=9.33\times10^9\,\mathrm{dm^3mol^{-1}s^{-1}}$

P. 433右の2行目に移動。

イオン半径比 191

ワトソン・クリック

調和振動子近似

4行目 $1 = \overline{v}/z_{N_2} = ...$

 $(e=mv^2/2$ と変数変換)

 $A=9.33\times10^9\,\mathrm{dm^3mol^{-1}s-1}$

イオン化半径比 191

標準起電力

調和振動数近似

ワトソンクリック

12.7

17.3

17.4

中央6

中央↑9

中央↑12

右↑1

427

429

431

432

435

ページ	行など	誤	正
100	(C.46)式	$\mathbf{L} = \sum_{i=1}^{N} r^{i} =$ $\mathbf{L} = \sum_{i=1}^{\infty} r^{i} =$	$\mathbf{L} = \sum_{i=0}^{N} r^{i} =$ $\mathbf{L} = \sum_{i=0}^{\infty} r^{i} =$
	(C.47)式	$\mathbf{L} = \sum_{i=1}^{\infty} r^i =$	$\mathbf{L} = \sum_{i=0}^{\infty} r^i =$
107	例題4.1答	$\int j (1\sigma^*) j (1\sigma) dt =$	$\int j (1\sigma)j (1\sigma^*) dt =$
	表4.1列5		He ₂
110	図下8	図中の波線	図中の破線
111	表下1	630 kJ mol ⁻¹	596 kJ mol ⁻¹
115	11	D_{AA}, D_{AB}, D_{AB} とする。	D_{AA}, D_{BB}, D_{AB} とする。
117	↑10	分子軌道	混成軌道
118	↑ 9	すなわち y_2 と y_2 の	すなわち y_2 と y_3 の
122	↑ 5	ここに孤立電子体	ここに孤立電子対
122	↑1	では、結合のための	では、各結合のための
124	6	水素原子の	水素類似原子の
	12	$+c_1c_2^*\int j_1^*Hj_2dt)+$	$+c_1c_2^*\int j_1Hj_2^*dt)+$
126	(4.23)式	$H_{ij} = \int j_i H j_j dt,$	$H_{ij} = \int j_i^* H j_j dt,$
		$S_{ij} = \int j_i j_j dt$	$S_{ij} = \int j {}_{i}^{*} j {}_{j} \mathrm{d}t$
129	3-4	外側にまで拡がった一番エネ	
133	問題4.2表	表中の化学式に付い	いた「・」を総て削除
136	2つ目の口	光吸収がなぜ起こるかく	光吸収がなぜ起こるか
154	8	波長幅の光を与える。	波長幅の光が得られる。
155	1	…モル吸収係数	…モル吸光係数
163	表下4	作用や誘起相互作用が	作用が
103	† 2	(図6.2, 4.10節(d)参照)。	(図6.2, 4.7節(c)参照)。
	1つ目の口	$T/K = t/^{\circ}C + 273.16$	$T/K = t/^{\circ}C + 273.15$
230	2つ目の口	1行目の式の U を ΔU に変える	
		1行目の網掛け不要。図の右つ	下のwをδwに変える。 $D \!\!\!\! o \!\!\!\! - \!\!\!\! \Delta$ 。
232	(9.1)式	T = t + 273.16	T = t + 273.15
235	図9.2	図の右下の w を δw に変える。	
242	図9.5	$D\!H_{ m f}^0$	$\Delta_{ m r} H^0$
252	図9.7	図中の「H ₂ の定圧熱容量」を	
259	(10.9)式	$W_{A} = \mathbf{L} = \frac{5!}{} = 5$	$W_A = \mathbf{L} = \frac{5!}{4!0!0!1!0!0!} = 5$
	<u> </u>	4!0!0!0!0!1!	4:0:0:1:0:0:
278	□中7行目	4:0:0:0:0:1: 最後の項の積分中の <i>C</i> _P ^s (<i>T</i>) を	

ページ	行など	誤	正
297	例題12.4	$\int_{T_1}^{T_2} d\left(\frac{\Delta G}{T}\right) = -\int_{T_1}^{T_2} d\frac{\Delta H}{T^2} dT$	$\int_{T_1}^{T_2} d\left(\frac{\Delta G}{T}\right) = -\int_{T_1}^{T_2} \frac{\Delta H}{T^2} dT$
319	図13.10	右2つの箱の中の○の濃淡が間違っています。また、一番右の 図の下の「斥力的」を「引力的」に直して下さい。	
	(13.48)式	$G^{S} = H^{g} - TS^{g}$	$G^{S} = H^{S} - TS^{S}$
320	表13.1	$G^{S} = H^{g} - TS^{g}$ $\Delta_{\text{vap}}S^{0} \text{ kJ k}^{-1} \text{ mol}^{-1}$ $GH $	$\Delta_{\text{vap}} S^0 \text{ J k}^{-1} \text{ mol}^{-1}$
326		CH_4 の $\Delta_{vap}S^0$ の値を、 73.25 に直す。 このページには、本来ローマン体(立体)にすべき活字がイタ リック(斜体)になったものが沢山あります。化合物は立体、 物理量は斜体、 D は Δ にして下さい。	
335	例題14.3	[CH₃COOH]	[CH₃COOH]
336	4	濃度を c_a , c_s とすると	弱酸と塩の濃度をそれぞれ c_a , c_s とすると
	14	C_s/C_a	c_s/c_a
338	3	$a = \mathbf{L} = \frac{[\mathbf{A}^+][\mathbf{B}^-]}{[\mathbf{A}\mathbf{B}]}$	$a = L = \frac{[A^+]}{[AB]_0} = \frac{[B^-]}{[AB]_0}$
	4	$a \approx \sqrt{\frac{K}{C_0}}$	$a \approx \sqrt{\frac{K}{c_0}}$
341	9と20	C_0	c_0
342	(15.9)式	$k=a c [L(C^+)+L_0(A^-)]$	$k=ac[L(C^+)+L(A^-)]$
349	1	成り立つ。の後ろに、「Fはフ	アラデー定数である」を挿入。
352	図15.6	図中の2HTを2H ⁺ に直す(2箇所	
353	上の口	右端の最下段の分子式から上位	寸きの ⁻ を削除。-COOH
372	13	$2.4 \times 10^{25} \mathrm{m}^{-3}$	$2.5 \times 10^{25} \text{ m}^{-3}$
374	↑ 9	9.3.5項で見たように、	9.3.3項で見たように、
375	† 4	e_a	E_a
	3	(17.9)式より	(17.3)式より
377	(17.16)式	$\log k = \log A - \frac{E_a}{2.303RT}$ あるいは $\ln k = \ln A - \frac{E_a}{RT}$ に直す。	
	↑1	Arrehnius	Arrhenius
378	表17.1	CH4の活性化エネルギーを、30	
381	表17.2	Cl + H2 = OH + H $OH + H2 = H2 + H$	O + H2 = OH + H $OH + H2 = H2O + H$
382	(17.23)式	下段の式の $\Delta S \delta \Delta S^{\dagger}$ に直す。	22
386	前文2行目		…となっていること
390	例題18.1	解答の数字を 2 桁に直す(精度を下げる)。 1.15→1.2, 3.54→3.5, 9.6→10	
391	例題18.2	上と同じく、2.21→2.2, 89.6→90 に直す。	