HOME >> セミナー

分子理論化学セミナー(2017年度)

Prof. Kenneth M. Merz Jr. (Michigan State University)

“Role of Reaction Dynamics and Surface Topology in Enzymatic Catalysis”

日時:2017年12月1日(金) 14:00-
場所:京都大学工学研究科(桂キャンパス)A2-304号室

井本翔博士(Ruhr-Universität Bochum)

日時:2017年10月23日(月) 15:00-
場所:京都大学工学研究科(桂キャンパス)A4-022B号室

Prof. Michiel Sprik (Cambridge U)

“All-atom DFT simulation of charged metaloxide-electrolyte interfaces”

日時:2017年4月5日(水) 14:00-
場所:京都大学工学研究科(桂キャンパス)A2-304号室

Fully atomistic (all-atom) modelling of metal-oxides electrolyte interfaces treating the aqueous solution (electrolyte) at the same level of Density Functional Theory (DFT) remains a challenge. An obvious problem is that the periodic boundary conditions applied in DFTMD force us to use a slab geometry with two interfaces. Moreover, it would be better if an interface could be charged at fixed composition. Changes in the number of particles are better avoided in DFT. This is why we have opted for a method for charging the two interfaces by transferring charge (protons for example) from one side of the slab to the other leading to surfaces of opposite charge. The drawback is that this creates a large electric field inside the solid slab if the metal oxide is an insulator making a very poor model for an interface of a semi-infinite solid. In a recent simulation of a classical spc force field model of a charged interface we have shown how this difficulty can be overcome using finite electric field methods[1]. The DFTMD implementation of the finite field method was validated in a computation of the static dielectric constant of PBE water[2]. In this talk we will outline the development of the method and report on the first DFT application to a model TiO2 electrolyte interface (2M NaCl). We end with an outlook for the investigation of polar surfaces in contact with an electrolyte.

Reference:

  1. Chao Zhang and Michiel Sprik, Phys. Rev. B 94 (2016), 245309.
  2. Chao Zhang, Juerg Hutter, and Michiel Sprik, J. Phys. Chem. Lett. 7 (2016), 2696.